Publications

Open access copies to final versions of all my publications can be found on ArXiV, together with preprints currently submitted for publication. Click Here.

  1. C. Cotter, J. Deasy and T. Pryer. The r-Hunter-Saxton equation, smooth and singular solutions and their approximation. Nonlinearity, https://doi.org/10.1088%2F1361-6544%2Fabab4d, 2020.

  2. N. Katzourakis, T. Pryer. On the numerical approximation of vectorial absolute minimisers in L∞. Nonlinear Differential Equations and Applications, https://doi.org/10.1007/s00030-020-00655-7, 2020.

  3. J. Jackaman and T. Pryer. Quasinorms in semilinear elliptic problems. Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018, 2020.

  4. Z. Dong, E. Georgoulis, T. Pryer. Recovered finite element methods on polygonal and polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis, https://doi.org/10.1051/m2an/2019047, 2020.

  5. G. Papamikos, J. Jackaman, T. Pryer. The design of conservative finite element discretisations for the vectorial modified KdV equation. Applied Numerical Mathematics, https://doi.org/10.1016/j.apnum.2018.10.006, 2018.

  6. G. Papamikos, T. Pryer. A Lie symmetry analysis and explicit solutions of the two-dimensional ∞-Polylaplacian. Studies in Applied Mathematics, https://doi.org/10.1111/sapm.12232, 2018.

  7. P. Sirimark, A. Lukyanov, T. Pryer. Surface permeability of porous media particles and capillary transport. EPJ E-Soft Matter & Biological Physics, https://doi.org/10.1140/epje/i2018-11716-6, 2018.

  8. N. Katzourakis, T. Pryer.  On the numerical approximation of p-Biharmonic and ∞-Biharmonic functions. To appear in Numerical Methods for Partial Differential Equations, 2018.

  9. N. Katzourakis, T. Pryer. A review from the PDE viewpoint of Hamilton-Jacobi-Bellman equations arising in optimal control with vectorial cost. Journal of Nonlinear Functional Analysis, http://jnfa.mathres.org/archives/1559, 2018.

  10. E. Georgoulis, T. Pryer. Recovered finite element methods. Computer Methods in Applied Mechanics and Engineering, https://doi.org/10.1016/j.cma.2017.12.026, 2018.

  11. N. Katzourakis, T. Pryer. 2nd Order L∞ Variational Problems and the ∞-Polylaplacian. Advances in Calculus of Variations, https://doi.org/10.1515/acv-2016-0052, 2018.

  12. E. Georgoulis, T. Pryer. Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data. Calcolo, https://doi.org/10.1007/s10092-017-0240-5, 2017.

  13. E. Kesici, B. Pelloni, T. Pryer, D. Smith. A numerical implementation of the unified Fokas transform for evolution problems on a finite interval. European Journal of Applied Mathematics, https://doi.org/10.1017/S0956792517000316, 2017.

  14. A. Lukyanov, T. Pryer. Hydrodynamics of moving contact lines: macroscopic versus microscopic. Langmuir, https://doi.org/10.1021/acs.langmuir.7b02409, 2017.

  15. J. Giesselmann, T. Pryer. A Posteriori Analysis for Dynamic Model Adaptation in Convection Dominated Problems. Mathematical Models and Methods in Applied Sciences, https://doi.org/10.1142/S0218202517500476, 2017.

  16. T. Pryer. On the finite element approximation of infinity-harmonic functions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148(4), 819-834. https://doi.org/10.1017/S0308210517000294, 2018.

  17. J. Giesselmann, T. Pryer. Goal-oriented error analysis of a DG scheme for a second gradient elastodynamics model. Finite volumes for complex applications, https://doi.org/10.1007/978-3-319-57397-7_39, 2017.

  18. A. Cangiani, E. Georgoulis, T. Pryer, O. Sutton. A posteriori error estimates for the virtual element method. Numerische Mathematik, https://doi.org/10.1007/s00211-017-0891-9, 2017.

  19. N. Katzourakis, T. Pryer. On the numerical approximation of ∞-harmonic mappings. Nonlinear Differential Equations and Applications, https://doi.org/10.1007/s00030-016-0415-9, 2016.

  20. J. Giesselmann, T. Pryer. Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics. BIT Numerical Mathematics, 2016.

  21. J. Giesselmann, T. Pryer. Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics. IMA Journal of Numerical Analysis, 2016.

  22. O. Lakkis, T. Pryer. An adaptive finite element method for the infinity Laplacian. Numerical mathematics and advanced applications, 2015.

  23. O. Lakkis, Ch. Makridakis, T. Pryer. A comparison of duality and energy a posteriori estimates for L∞(0,T;L2(Ω)) in parabolic problems, Mathematics of Computation, 2015.

  24. J. Giesselmann, T. Pryer. Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. Mathematical Modelling and Numerical Analysis, 2015.

  25. J. Giesselmann, Ch. Makridakis, T. Pryer. A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM Journal of Numerical Analysis, 2015.

  26. E. Mansfield, T. Pryer. Noether type discrete conserved quantities arising from a finite element approximation of a variational problem. Foundations of Computational Mathematics, 2015.

  27. J. Giesselmann, Ch. Makridakis, T. Pryer. Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system. Mathematics of Computation, 2014.

  28. Pryer. Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective. Electronic Transactions of Numerical Analysis, 2014.

  29. J. Giesselmann, T. Pryer. On a posteriori error analysis of dG schemes approximating hyperbolic conservation laws. Finite volumes for complex applications, 2014.

  30. T. Pryer. Applications of nonvariational finite element methods to Monge-Ampère type equations. Numerical mathematics and advanced applications, 2013.

  31. O. Lakkis, T. Pryer. A finite element method for nonlinear elliptic problems. SIAM Journal of Scientific Computing, 2013.

  32. O. Lakkis, T. Pryer. Gradient recovery in adaptive finite element methods for parabolic problems. IMA Journal of Numerical Analysis, 2012.

  33. O. Lakkis, T. Pryer. A finite element method for second order nonvariational elliptic problems. SIAM Journal of Scientific Computing, 2011.